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2024 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 

Mathematics Extension 1 

General 
Instructions 

 

• Reading time –  10 minutes 

• Working time –  2 hours 

• Write using black pen  

• Approved calculators may be used 

• A reference sheet is provided 

• Marks may be deducted for careless or badly arranged work. 

• In Questions in Section II, show relevant mathematical reasoning and/or 
calculations   

Total marks : 70 Section I – 10 marks   

• Attempt Questions 1 – 10  

• Allow about 15 minutes for this section 

Section II – 60 marks   

• Allow about 1 hours and 45 minutes for this section 

• Write your student number on each answer booklet. 

• Attempt Questions 11 – 15 
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Section I 
10 marks 
Attempt Questions 1 – 10  
Allow about 15 minutes for this section 
Use the multiple-choice answer sheet for Questions 1 – 10. 
 

 

1. Given ( ) 1f x x= + , the domain and range of ( )1f x−  are: 

A. Domain:{ 0}, Range:{ 0}x y≥ ≥  

B. Domain:{ 0}, Range:{ 1}x y≥ ≥  

C. Domain:{ 1}, Range:{ 0}x y≥ ≥  

D. Domain:{ 1}, Range:{ 1}x y≥ ≥  

 

2. The acute angle (to the nearest degree) between the vectors 3
2

u
 

=  
 

 and 
9

17
v

 
=  
 

 is:  

A. 24°  

B. 51°  

C. 46°  

D. 48°  

 

3. The solution to the inequality  3 4
2x
≤

−
 is given by: 

A. 2x< −  and 11
4

x ≥ −  

B. 2x > −  and 11
4

x ≤ −  

C. 2x <  and 11
4

x ≥  

D. 2x >  and 11
4

x ≤  
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4. A function is defined as ( ) ( )( )1tan tanf x x−= .  

    The value of 9
4

f π 
 
 

 is: 

A. 
4
π  

B. 5
4
π  

C. 7
4
π  

D. 9
4
π  

 

5. When the polynomial ( )P x  is divided by 1x +  it gives a remainder of 2n , where n  is a               

     positive integer. When ( )P x is divided by ( )( )1 3x x+ +  it gives a remainder ( )6nx + .       
     The value of n  is: 
 

A. 1 
 
B. 3 
 
C. 6 
 
D. 2 

 
 
 
6. The sin 3 sinx x dx∫  is equal to: 

A. 1 1sin 2 sin 4
4 8

x x C− +                          

B. 1 1sin 4 sin 2
8 4

x x C− +  

C. 1 1cos 2 cos 4
4 8

x x C− +  

D. 1 1cos 4 cos 2
8 4

x x C− +  
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7. In the graph below, ( )'y P x=  represents the first derivative of a polynomial ( )P x  of         

    degree 4, where ( )P x has a multiple root. 

 

                                        

 

Which of the following could be true about the polynomial ( )P x  ? 

A. 1x = −  is a root of multiplicity 3. 

B. 0x =  is a root of multiplicity 2. 

C. 2x =  is a root of multiplicity 2. 

D. 2x =  is a root of multiplicity 3. 

 

8. The derivative of ( ) ( )2 12 cos 2f x x x−=  is: 

A. 
2

8
1 2

x
x

−

−
 

B. 
2

8
1 4

x
x

−

−
 

C. 
1

2

2

4 4 cos 2
1 2

x x x
x

−−
+

−
 

D. 
1

2

2

4 4 cos 2
1 4

x x x
x

−−
+

−
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9.  The diagram below shows the graph of the function ( )y g x= , which is the result of a set  

     of transformations on the graph of ( )y f x= .  

                                                    

If ( )f x = 1 2
2x
+

−
, which equation best represents ( )g x  ? 

A. ( ) ( )
1

2
g x

f x
=

−
 

B. ( ) ( )2g x f x= −  

C. ( ) ( )
1

2
g x

f x
=

+
 

D. ( ) ( )2g x f x= +  

 

10. Vector 1

2

a
a

a
 

=  
 

 is projected on to vector 
4
6

b  
=  
 

. Given that 1Proj
2ba b=



 

, which of the 

following could possibly be vector a


? 
 

A. 
10
2

a  
=  
 

 

B. 
2

10
a  
=  
 

 

C. 
5
1

a  
=  
 

 

D. 
1
5

a  
=  
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Section II 
60 marks 
Attempt Questions 11 – 15  
Allow about 1 hour and 45 minutes for this section 
Answer each question in a SEPARATE writing booklet.  Extra writing booklets are available. 
In questions 11 – 15, your responses should include relevant mathematical reasoning and/or calculations. 
 

 

Question 11 (13 marks) Use the Question 11 Writing Booklet 

 

(a)   Let P  be the point ( )12,5 . Find the position vector of point P , and hence find a  

        unit vector in the direction of the position vector.          2 
 
 
 

(b)   Find the exact value of  2 2sin
3

x dx⌠
⌡

.  1 

 
 
 
(c)   Use the t - identities to solve the equation 2sin cos 1 0x x+ + =  for 0 2x π≤ ≤ . 4 
 

 

 

(d)   Find  
2

1
64 49

dx
x−

⌠

⌡

.    2 

 

 

(e)  (i) Express cos 3 sinx x−  in the form ( )cosR x α+  for 0R >  and α  acute. 2 

 
     (ii) Hence, solve cos 3 sin 2x x− =  for  0 2x π≤ ≤ . 2 

 

 

 

End of Question 11  
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 Question 12 (12 marks) Use the Question 12 Writing Booklet 

 
 (a)  There are four teams consisting of two tennis players in each team.  2 

 They are seated around a circular table.  

 In how many ways can the teams be arranged around the table if the players in  

 each team are to stay together. 

(b) By using the substitution sinx θ= , find  ( )
1

32 2 2

0

1 x dx
−

−⌠

⌡

 3  

 
 
(c)  Prove by mathematical induction that 3 1 3 23 5n n− −+  is divisible by 7,  4 

        for any integer 1n ≥ .        

 
 
(d)  A cake tin cools such that its temperature T degrees, t minutes after it is removed  3 

from the oven is given by: 

ktT R Ae−= +  Where k, R and A are constants 

It is known that: 

( )dT k T R
dt

= − −   Do NOT prove this. 

      When removed from an oven the cake tin has a temperature of 180 C° . If the cake            
        tin takes one minute to cool to 150 C° and the room temperature is 20 C° , find the  
       time to the nearest minute it takes for the cake tin to cool to 80 C° . (Assume that the cake tin 

cools at a rate proportional to the difference between the temperature of the cake tin and the 
temperature of the surrounding air.) 

 
   
 
 

                                                        

 

End of Question 12 
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Question 13 (13 marks) Use the Question 13 Writing Booklet 

(a)  The side lengths of an equilateral triangle are shrinking at a rate of  /x m s , where x  
metres is the length of each side of the triangle. The triangle and the circle shown below 
always have the same area  A . 

 
       (i) Show that the rate of change of the area of the triangle is: 2 

3
2
x x− 2m /s  

 

      (ii)  Find the rate of change of the radius of the circle when 5x =  metres. 3 

             Give the answer correct to 2 decimal places. 

 
 
 
(b) By considering ( ) ( )2 21 1n nx x+ + −  , where n is a positive integer, show that: 3 

 
2 2 2 41 . . .
2 4 2 2

nn n n
n

     
+ + + + =     
     

. 

 
 
 
 
 
 
 
 
 
 

Question 13 continues on the next page 
  

x 

x x r 
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Question 13 continued 
 
(c)   OABC is trapezium with  3OA CB=

 

 .  OA a=




  and  OC c=




.  

 E and F are midpoints of OB  and  CA respectively. 
 

 

(i) Show that  
1 1
2 3

OE c a = + 
 



 

. 1 

 
 

(ii) Find EF


. 3 
 
 

(iii) Hence, prove that CEFB is a parallelogram. 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                       End of Question 13 

O 

E 
F 

B 

A 

C 
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Question 14 (11 marks) Use the Question 14 Writing Booklet  

 

(a)     A particle P is moving along the x  axis. At time 0t = , it was at 0.x =  Its velocity  4 

         1v ms−  at a time t  is given by 21 ( )

t

t

ev
e

=
+

.  

         The graph below shows its velocity as a function of time. 

 

         Given that the displacement of the particle when t k=  seconds is 1 1tan
2

−  metres,  

         show that ln 3k = .  

 

 

 

 

 

 

 

 

 

 

 

 

                                               Question 14 continues on the next page. 
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Question 14 continued 

 

(b)  Jacob hits two balls at the same time from the origin O  towards a target on a vertical wall. 

      The velocity of the first ball is 1V ms−  and its angle of projection is α  to the horizontal  

      while the velocity of the second ball is 115
7
V ms− and its angle of projection to  

      the horizontal is 2α . 

 

(i) Show that the position vector of the second ball t  seconds after being   3 

projected is given by: 

( )2
2

15 cos 2
7
1 15 sin 2
2 7

V t
r t

Vgt t

α

α

 
 

=  
 − + 
 



 

 

(ii)    It is known that both balls hit the wall after T  seconds. 4 

 Show that 5cos
6

α = .  

 

                                                         End of Question 14  
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Question 15 (11 marks) Use the Question 15 Writing Booklet 

 

(a)  Consider the shaded region bounded by the line 2 1y x= − , the curve ( )22y x= −  and         4                  

      the y -axis. 

                            

 Find the volume of the solid of revolution formed by rotating this region about the  

y -axis. 

              

(b) (i) Show that the solution of cos3 sin 2 0x x− = , for 0
2

x π
< <  is given by                            3 

5 1sin
4

x −
= . 

           You may use the identity 3cos3 4cos 3cosx x x= − .  DO NOT PROVE THIS. 

     (ii) Without a calculator, verify that 
10

x π
=  is a solution to cos3 sin 2x x= . 1      

                                  

    (iii) Using the results obtained in parts (i) and (ii) prove that  3 

5sin cos
5 10 4
π π

= . 

 

                                       END OF EXAMINATION 
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2024 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 

Mathematics Extension 1 

General 
Instructions 

 

• Reading time –  10 minutes 

• Working time –  2 hours 

• Write using black pen  

• Approved calculators may be used 

• A reference sheet is provided 

• Marks may be deducted for careless or badly arranged work. 

• In Questions in Section II, show relevant mathematical reasoning and/or 
calculations   

Total marks : 70 Section I – 10 marks   

• Attempt Questions 1 – 10  

• Allow about 15 minutes for this section 

Section II – 60 marks   

• Allow about 1 hours and 45 minutes for this section 

• Write your student number on each answer booklet. 

• Attempt Questions 11 – 15 
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Section I 
10 marks 
Attempt Questions 1 – 10  
Allow about 15 minutes for this section 
Use the multiple-choice answer sheet for Questions 1 – 10. 
 

 

1. Given ( ) 1f x x= + , the domain and range of ( )1f x−  are: 

A. Domain:{ 0}, Range:{ 0}x y≥ ≥  

B. Domain:{ 0}, Range:{ 1}x y≥ ≥  

C. Domain:{ 1}, Range:{ 0}x y≥ ≥  

D. Domain:{ 1}, Range:{ 1}x y≥ ≥  

 

2. The acute angle (to the nearest degree) between the vectors 3
2

u
 

=  
 

 and 
9

17
v

 
=  
 

 is:  

A. 24°  

B. 51°  

C. 46°  

D. 48°  

 

3. The solution to the inequality  3 4
2x
≤

−
 is given by:  

A. 2x< −  and 11
4

x ≥ −  

B. 2x > −  and 11
4

x ≤ −  

C. 2x <  and 11
4

x ≥  

D. 2x >  and 11
4

x ≤  
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4. A function is defined as ( ) ( )( )1tan tanf x x−= .  

    The value of 9
4

f π 
 
 

 is:  

A. 
4
π  

B. 5
4
π  

C. 7
4
π  

D. 9
4
π  

 

5. When the polynomial ( )P x  is divided by 1x +  it gives a remainder of 2n , where n  is a               

     positive integer. When ( )P x is divided by ( )( )1 3x x+ +  it gives a remainder ( )6nx + .       
     The value of n  is:  
 

A. 1 
 
B. 3 
 
C. 6 
 
D. 2 

 
 
 
6. The sin 3 sinx x dx∫  is equal to:  

A. 1 1sin 2 sin 4
4 8

x x C− +                          

B. 1 1sin 4 sin 2
8 4

x x C− +  

C. 1 1cos 2 cos 4
4 8

x x C− +  

D. 1 1cos 4 cos 2
8 4

x x C− +  
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7. In the graph below, ( )'y P x=  represents the first derivative of a polynomial ( )P x  of         

    degree 4, where ( )P x has a multiple root. 

 

                                        

 

Which of the following could be true about the polynomial ( )P x  ? 

A. 1x = −  is a root of multiplicity 3. 

B. 0x =  is a root of multiplicity 2. 

C. 2x =  is a root of multiplicity 2. 

D. 2x =  is a root of multiplicity 3. 

 

8. The derivative of ( ) ( )2 12 cos 2f x x x−=  is:  

A. 
2

8
1 2

x
x

−

−
 

B. 
2

8
1 4

x
x

−

−
 

C. 
1

2

2

4 4 cos 2
1 2

x x x
x

−−
+

−
 

D. 
1

2

2

4 4 cos 2
1 4

x x x
x

−−
+

−
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9.  The diagram below shows the graph of the function ( )y g x= , which is the result of a set  

     of transformations on the graph of ( )y f x= .  

                                                    

If ( )f x = 1 2
2x
+

−
, which equation best represents ( )g x  ?  

A. ( ) ( )
1

2
g x

f x
=

−
 

B. ( ) ( )2g x f x= −  

C. ( ) ( )
1

2
g x

f x
=

+
 

D. ( ) ( )2g x f x= +  

 

10. Vector 1

2

a
a

a
 

=  
 

 is projected on to vector 
4
6

b  
=  
 

. Given that 1Proj
2ba b=



 

, which of the 

following could possibly be vector a


? 
 

A. 
10
2

a  
=  
 

 

B. 
2

10
a  
=  
 

 

C. 
5
1

a  
=  
 

 

D. 
1
5

a  
=  
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Section II 
60 marks 
Attempt Questions 11 – 15  
Allow about 1 hour and 45 minutes for this section 
Answer each question in a SEPARATE writing booklet.  Extra writing booklets are available. 
In questions 11 – 15, your responses should include relevant mathematical reasoning and/or calculations. 
 

 

Question 11 (13 marks) Use the Question 11 Writing Booklet 

 

(a)   Let P  be the point ( )12,5 . Find the position vector of point P , and hence find a  

        unit vector in the direction of the position vector.          2 

 
 
 
 
 

(b)   Find the exact value of  2 2sin
3

x dx⌠
⌡

.  1 
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(c)   Use the t - identities to solve the equation 2sin cos 1 0x x+ + =  for 0 2x π≤ ≤ . 4 
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(d)   Find  
2

1
64 49

dx
x−

⌠

⌡

.    2 

 

 

 

(e)  (i) Express cos 3 sinx x−  in the form ( )cosR x α+  for 0R >  and α  acute. 2 
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     (ii) Hence, solve cos 3 sin 2x x− =  for  0 2x π≤ ≤ . 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

End of Question 11  
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 Question 12 (12 marks) Use the Question 12 Writing Booklet 

 (a)  There are four teams consisting of two tennis players in each team.  2 

 They are seated around a circular table.  

 In how many ways can the teams be arranged around the table if the players in  

 each team are to stay together. 

 

 

 

(b) By using the substitution sinx θ= , find  ( )
1

32 2 2

0

1 x dx
−

−⌠

⌡

 3  
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(c)  Prove by mathematical induction that 3 1 3 23 5n n− −+  is divisible by 7,  4 

        for any integer 1n ≥ .        
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(d)  A cake tin cools such that its temperature T degrees, t minutes after it is removed  3 

from the oven is given by: ktT R Ae−= +  Where k, R and A are constants 

It is known that:   ( )dT k T R
dt

= − −   Do NOT prove this. 

      When removed from an oven the cake tin has a temperature of 180 C° . If the cake            
        tin takes one minute to cool to 150 C° and the room temperature is 20 C° , find the  
       time to the nearest minute it takes for the cake tin to cool to 80 C° . (Assume that the cake tin 

cools at a rate proportional to the difference between the temperature of the cake tin and the 
temperature of the surrounding air.) 

End of Question 12 
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Question 13 (13 marks) Use the Question 13 Writing Booklet 

(a)  The side lengths of an equilateral triangle are shrinking at a rate of  /x m s , where x  
metres is the length of each side of the triangle. The triangle and the circle shown below 
always have the same area  A . 

 
       (i) Show that the rate of change of the area of the triangle is: 2 

3
2
x x− 2m /s  

 

 

 

 

 

 

 

 

 

x 

x x r 
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      (ii)  Find the rate of change of the radius of the circle when 5x =  metres. 3 

             Give the answer correct to 2 decimal places. 

 

 
 
 



15 
 

(b) By considering ( ) ( )2 21 1n nx x+ + −  , where n is a positive integer, show that: 3 

 
2 2 2 41 . . .
2 4 2 2

nn n n
n

     
+ + + + =     
     

. 
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(c)   OABC is trapezium with  3OA CB=
 

 .  OA a=




  and  OC c=




.  

 E and F are midpoints of OB  and  CA respectively. 
 

(i) Show that  
1 1
2 3

OE c a = + 
 



 

. 1 

 
 

(ii) Find EF


. 3 

 
 

(iii) Hence, prove that CEFB is a parallelogram. 1 
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Question 14 (11 marks) Use the Question 14 Writing Booklet  

(a)     A particle P is moving along the x  axis. At time 0t = , it was at 0.x =  Its velocity  4 

         1v ms−  at a time t  is given by 21 ( )

t

t

ev
e

=
+

.  

         The graph below shows its velocity as a function of time. 
 

 Given that the displacement of the particle when t k=  seconds 

is 1 1tan
2

−  metres,  show that ln 3k = .  
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(b)  Jacob hits two balls at the same time from the origin O  towards a target on a vertical wall. 

The velocity of the first ball is 1V ms−  and its angle of projection is 
α  to the horizontal while the velocity of the second ball is 

115
7
V ms− and its angle of projection to the horizontal is 2α . 

(i) Show that the position vector of the second ball t  
seconds after be projected is given by:                    3 

( )2
2

15 cos 2
7
1 15 sin 2
2 7

V t
r t

Vgt t

α

α

 
 

=  
 − + 
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(ii)    It is known that both balls hit the wall after T  seconds. Show that 5cos
6

α = . 4 

 

  

 

 

 

 

                                                         End of Question 14  
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Question 15 (11 marks) Use the Question 15 Writing Booklet 

 

(a)  Consider the shaded region bounded by the line 2 1y x= − , the curve ( )22y x= −  and         4                  

      the y -axis. 

                            

Find the volume of the solid of revolution formed by 
rotating this region about the y -axis.  
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    (b) (i) Show that the solution of cos3 sin 2 0x x− = , for 0
2

x π
< <  is given by                          3 

5 1sin
4

x −
= . 

           You may use the identity 3cos3 4cos 3cosx x x= − .  DO NOT PROVE THIS. 
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     (ii) Without a calculator, verify that 
10

x π
=  is a solution to cos3 sin 2x x= . 1      

    (iii) Using the results obtained in parts (i) and (ii) prove that 5sin cos
5 10 4
π π

= . 3 

                                       END OF EXAMINATION 


